Jet–Ricci Geometry of Time-Dependent Human Biomechanics

نویسنده

  • Tijana T. Ivancevic
چکیده

We propose the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds derived from the extended musculo-skeletal configuration manifold. The corresponding Riemannian geometrical evolution follows the Ricci flow diffusion. In particular, we show that the exponential-like decay of total biomechanical energy (due to exhaustion of biochemical resources) is closely related to the Ricci flow on the biomechanical configuration manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jet Methods in Time–Dependent Lagrangian Biomechanics

In this paper we propose the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configu...

متن کامل

Time & Fitness–Dependent Hamiltonian Biomechanics

In this paper we propose the time&fitness-dependent Hamiltonian form of human biomechanics, in which total mechanical + biochemical energy is not conserved. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles, jet manifolds, polysymplectic geometry and Hamiltonian connec...

متن کامل

Time-Dependent Lagrangian Biomechanics

In this paper we present the time-dependent generalization of an ‘ordinary’ autonomous human musculo-skeletal biomechanics. We start with the configuration manifold of human body, given as a set of its all active degrees of freedom (DOF). This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for s...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Reduce the maximum scour depth downstream of Flip Bucket Spillway through the spillway geometry optimization (study released spillway dam Kurdistan)

The Performance of shooting pool, in addition to the quality of the area in which the flow collides with it, depends to the height of the jet drop, the angle of the water flow, the depth of the jet and the concentration of the jet. By increasing the height of the jet drop, the fall velocity increases and subsequently the jetchr('39')s energy will be more intrusive. Different collision area from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009